Prediction of Helpful Reviews Using Emotions Extraction

نویسندگان

  • Lionel Martin
  • Pearl Pu
چکیده

Reviews keep playing an increasingly important role in the decision process of buying products and booking hotels. However, the large amount of available information can be confusing to users. A more succinct interface, gathering only the most helpful reviews, can reduce information processing time and save effort. To create such an interface in real time, we need reliable prediction algorithms to classify and predict new reviews which have not been voted but are potentially helpful. So far such helpfulness prediction algorithms have benefited from structural aspects, such as the length and readability score. Since emotional words are at the heart of our written communication and are powerful to trigger listeners’ attention, we believe that emotional words can serve as important parameters for predicting helpfulness of review text. Using GALC, a general lexicon of emotional words associated with a model representing 20 different categories, we extracted the emotionality from the review text and applied supervised classification method to derive the emotion-based helpful review prediction. As the second contribution, we propose an evaluation framework comparing three different real-world datasets extracted from the most well-known product review websites. This framework shows that emotion-based methods are outperforming the structure-based approach, by up to 9%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRHM: Inclusive Review Helpfulness Model for Review Helpfulness Prediction in E-commerce Platform

Online reviews have become essential aspect in E-commerce platforms due to its role for assisting customers’ buying choices. Furthermore, the most helpful reviews that have some attributes are support customers buying decision; therefore, there is needs for investigating what are the attributes that increase the Review Helpfulness (RH). This research paper proposed novel model called inclusive ...

متن کامل

Feature extraction in opinion mining through Persian reviews

Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...

متن کامل

The Role of Review Arousal in Online Reviews: Insights from EEG Data

This paper examines the effects of review arousal on perceived helpfulness of online reviews, and on consumers’ emotional responses elicited by the reviews. Drawing on emotion theories in psychology and neuroscience, we focus on four emotions – anger, anxiety, excitement, and enjoyment that are common in the context of online reviews. The effects of the four emotions embedded in online reviews ...

متن کامل

Stochastic Customer Loyalty and Satisfaction Prediction using the SEM and SVM

Service and product reviews play an important role in determining what kind of product is. Such reviews provide useful information about customer concern and their experience with the product. Consequently, these reviews will be helpful for a business making products for the purpose of product recommendation, better customer understanding and attracting more loyal customers. As ecommerce has be...

متن کامل

Emotion Recognition from Physiological Signals

Nowadays keeping healthy has become one of the most important topics in our daily life. Keeping good mood is very helpful to one’s health. A lot of smart sensing systems have been designed and developed to detect human emotions. The physiological parameters obtained from the sensing system are then received and analyzed by computers. The physiological dataset collected by computers is then proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014